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Noting that by considering the asymptotic behaviour 
SJ,A  = lim R J , J Z ( ~ )  

x-0 
(1.7) 

the YBE is reduced to the braid relation (1.1). 

the broken lines denote spin 4, then equation (1.1) is reduced to 
If we consider the model shown in figure 1, where the full lines denote spin j and 

which satisfies the graph in figure 2. As usual the CP invariance should be satisfied, 

(1.9) 
ui,Ib()l = -b(hl-a(,) 

( ~ ' * ) d i I d ( , l  (Si ) -d i , ) -c i i )  

s:!s:!st? = s!!s:!s:f 
ShJShhSJh - SIkShhsiJ (1.10) 

under which only two equations in equation (1.8) are independent: 

I2 23 12-  23 12  21 .  

Hence, solving the model in figure 1 consists of solving equation (1.10). So far no 
general solutions of equation (1.10) have been derived. All of the known solutions are 
based on the standard construction with usual treatment by QG or fusion rule. 

Figure 2. 

Motivated by the results in [E-IO] where the solutions are beyond the standard 
construction, for the braid relation with the same spin spaces 

S,,S,,S,2 = S23S,,S23 

we want to find a general form of solutions for equation (1.10) which contains the 
standard ones as special case. 

After lengthy computation we reach the following results: 
( i )  General solutions of equation (1.1) can be explicitly derived. 

In the general case they depend on j f 2  ( f o r j = l , 2 , , . . )  o r j + $  ( f o r j = ; , ?  ,... ) free 
parameters, respectively, and cannot be related to the standard ones by a similar 
transformation. 

(ii) The Yang-Baxterization prescription [ IO]  can be performed to generate solu- 
tions of the YBE [ll]: 

R l ! ( x ) R : i ( x y ) R ! ! ( y )  = R ! f ( y ) R : t ( x y ) R : l ( x )  

R # x ) R f : ( x y ) d t : ( y )  = R ! : ( y ) R k ( x y ) R ! f ( x )  (1.11) 

R g ( x ) R f ! ( x y ) R i t ( y )  = R : j ( y ) R t t ( x y ) d ! , ( x ) .  
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The procedure of Yang-Baxterization is the consequence of CP invariance and is based 
on the Reshetikhin approach [2] and cannot be made by simply following [12]. 

(iii) The FRT approach [13] is used to give QG structure for a given S'l'z. The 
general solutions of equation (1.1) give rise to the standard structure of the QG, which 
is not surprising. However, the centralizer representation (in this paper only j2 =$ is 
taken into account) 

RjJz = p;,j,s;& (1.12) 

where P'"'( V'lO Vjz) = V ' z O  V',, possess a different structure from the standard one, 
namely 

R;Jz = standard + p ; A  (1.13) 

where R!&,d.rd can be expressed in terms of the basis e,(dI) and e'(u'2) in the usual 
way [l-3, 121. The additional terms are determined through recurrence relations. In 
other words, the 'exotic' property OCCUJS in the different way of construction of R'1'2 

with the basis rather than in the commutation relations. 

2. General solutions for Sji 

We are looking for general solutions satisfying equations (1.8) and (1.9) and the weight 
conservation 

a ( j )  + b ( i )  = c(i) + d( j ) .  

~ c 4 b ) 4 ! h l h l : " l  

(2.1) 
Then equations ( l . X ) ,  (1.9) and (2.1) constrain Sll and S J h  to the forms 

I, ,\ + G:G: la i .b+ .8:8:I,<, IL.LI 1" c ( * l d ( t ) - w I = h = C = d  

(2.3) 
where w = q - q-' and the parameters p'""'.h'i)' and q'"'J'.h'4" are to be determined. 
Obviously, for S t h  only the standard solution is allowed, as shown by equation (2.2). 

Substituting equations (2.2) and (2.3) into equation (1.8) and taking equation (1.9) 
into account we obtain the relations that the unknown parameters must satisfy: 

(S;4) - ( j lh(hl -  ~ ~ l ; ~ . b l l ~ ~ f i ~ l ~ ~ ~ ~ ~ 4 ~  ( o ( i 1 , h O J ) f i a I j )  blk l  
F0)dI;) - p  d l i )  c ( & ! + q  dl;)- lb( l18-44J 

p l ~ l ; ) . - t )  = - I  ( a l j l - l , - l )  4 P  

Without loss of generality, taking 

- 4  p ( - i  - f ) =  Q (2.5) 
where q and Q are arbitrary parameters, we then obtain the general solutions of 
equation (1.8) under equation (1.9): 

4 P 4 

q' "j,j .,',4"",'',- - P Q  w 2- ~ j - a ( j j j ~ [ j + a ( j ) + i j ~  

w = q - q  

where 

p(j.4) - 

p l ~ ~ j l . - ~ J  = -alii-, Q 4 1 ~ l j l . - ~ l = ~  lul;).hl = a I j ) + l - j  

,-,., i 1 - l  L) , " t i l  ,/ 
( a (  j )  Z j j ( i . 6 j  

-, 

[n l ,  =iq"-q-") / iq-q- ' ) .  (2.7) 
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Thus q'-"('"-'." can be determined if q'""'." are regarded as free parameters, In 
the general solutions there will be j + 2  or j + i  free parameters for j = 1 , 2 , . ,  , o r  
J = t,j, . . . , respectively. . 1 s  

When 

(2.8) q ! - a ( j ~ - l , h l  = ( n ( j ! , h )  Q = q  4 
the solutions (2.6) are reduced to the standard solutions, under which 

qlal!l:-il-n I . 1 i l . l l -  0 ' " t t - J  
P '  '~ '. - 9  "" 

- U  

!a l j l . -h )  = - o ( . i ) + l - j  
(2.9) P 4 

qla!j).il = -i+i ~ { [ j - a ( j ) l , [ j + a ( i ) + l ] ~ } ~  

which coincide with the results given in [l-31. Actually, by direct calculation, up to 
an overall factor q-'+', equation (2.9) leads to the representation of the universal 
R-matrix: 

m : ] , ! [ f - m , l s . ! [ j - m ; I u ! [ j + m , l u !  
[+ -mi ] , ! [++  m , I 4 ! [ j +  m & ! [ j -  m,lq ! 

( a ( j )  is taken as m). 
To illustrate we now give some examples. When j = 1 we have the solutions 

0 
41 

. 

01 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

with 

4 2  = -44,. (2.14) 

Both solutions satisfy equations (1.8), (1.9) and (2.1). 
We emphasize that the general solution possesses six distinct eigenvalues for j = 1; 

for example, q. Q, f(qi*(qj+4q-2Q)"2, i =  1,2. However, the standard one has only 
three distinct eigenvalues because of the reduction. Obviously they cannot be connected 
through a similar transformation. This feature holds for any j .  The example with j = t 
has been analysed explicitly. We omit this example in this paper. 
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3. Yang-Baxterization 

As was pointed out in [lo] the Yang-Baxterization prescription is developed on the 
basis of Jimbo's loop extension theory [ll], which is based on projectors and corre- 
sponding eigenvalues. It is worth noting that Yang-Baxterization for the present 
solutions cannot simply be done by following either [ 101 or [ 111, because in the present 
case the numbers of distinct eigenvalues and decomposed subspaces are no longer the 
same. The number of such subspaces is two, resulting in the decomposition 

(3.1) 

Our scheme is very simple and is based on direct verification. For Sii it is well known 
that 

(3.2) 

Taking equation (3.1) into account we know Yang-Baxtenzation for S'I takes the form 

J @  = j + f@J - L 2 .  

d ' y X )  = X(sii)-l - 9 4 .  

RJ"(x) = A , X ( S ~ ~ ) - ~ + A $ '  (3.3) 

R ~ ~ ( x ) = A , x ( s J ~ ) ~ ~ + A , s ~ J  (3.4) 

where the C P  invariance has been considered. Substituting equations (3.2)-(3.4) into 
equation (1.11) we find equation (1.11) is satisfied for any spectral parameter x if 

A,  = -Qq-'jA 2 .  (3.5) 

For convenience we take A, = q then 

A2= -q2j+1Q-1, (3.6) 

In this manner the Yang-Baxterization of the general solutions leads to 

( X ) E ~ l j ) , b l j l ~ E h ( l ) , a ( j )  
= 1 pla( j l ,b ( i l )  

aIjl.b(i1 

(3 .7)  + 1 qlalj).b141) (X)Eal.i),-h(l)@ E b ( i l , a ( j ) + Z b l ~ l  
d i ) . h O l  

where (Ea.b)cd = S,,Sbd and 

-q2,+l Q-iqlal ,) , i l  

~ q z , + l x q ~ - ~ l , l . ~ l  

Equation (3.8) allows the standard solutions as a special case where 

for b(f)  = f 
for b(f) = - $ 

q l u l ~ l . b ( i l )  = (3.9) 

(3.10) 

for b(f) = f  
(3.11) 

It is interesting to point out that by taking x = - l  the standard solutions of 
R J * ( x ) l x = - ,  given by equations (3.10) and (3.11) exactly coincide with the results given 
in [14,15]. This particular example ( j  = 1) had been given in 1161. 

q l d , l . h ( i l l  - q ' + ' w t [ j - n ( i ) 1 4 [ i + a ( j ) +  1 1 ~ t ' ' ~  
for b(f) = -i. 
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4. Quantum group structure 

Following the FRT approach [131 for a given SIi the corresponding quantum group 
can be set up. For convenience the indices a(j)  will henceforth be replaced by Greek 
letters and b ( $ )  by Latin letters; we then have the solutions 

(4.1) 

(4.2) 

(SJ4)kl” =p”.l~s*~l + (*.‘l~’ I 
Y m 9 ” - 2 I L ”  

(shj)l* = ( - r . - lg-*g- I  + (-e.-Os-* 
“m P -” - m  9 - “ + 2 l K !  

where 

U:=O f o r & < v  

p:=0 for p > U 
aE=p:= 1 



General solutions of R"(x) 4961 

The coproduct A, co-unit E and antipode y are given by the following: 

A K ,  = K , O K ,  AK2 = K 2 0  K ,  

A X + =  K ; ~ o x + + x + o K ; ~  

E ( K , )  = &(K2) = 1 

A X - =  X - O K : K ; 4 +  K T 2 Q X -  
(4.10) 

& ( X * )  = o  
y ( X ' ) =  -Q- 'qK:K:X+ y ( X - ) =  -Qq-'KF2K;X- 

K;' y (  K 2 )  = K c ' .  

Similar to the discussion in [17] the commutation relations can be simplified by 

X=y&;!, (4 . i i )  

introducing 
-7+ .,*.,2 
A - = A  K ;  

We then have the usual commutation relations except a centre 

K, ,+*K;~ = (~~-1)*1/2jz* 

x.pJ-1= q*lz* (4.12) 
rG+ +-n-1y+(x-2-x2\ I .  

[ YC, K,] = 0 

L'. I , .  , - Y  

It is not surprising that the above result has been reached since we cannot go 
beyond the basic structure of the QG, Actually, this result checks the validity of our 
solutions. We would like to emphasize that the derivation of such commutation relations 
does not mean that the QC structure is 'trivial'. In the next section we will point out 
that the construction of the R-matrix is no longer standard, i.e. it cannot be formed 
in the usual way in terms of basis, nor can it be related to any similar transformation 
of the standard basis. 

5. Relationship between general and standard solutions 

According to the standard construction of the I?-matrix i i -3 j  the centraiizer can be 
represented in terms of the basis of universal enveloping algebra. The representation 
in this case is 
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Let us determine Ai' and A'! by substituting equation (5.3) into equation ( 1 . 1 ) .  The 
constraint relations yield 

(5.4) si!(A!jsh; + ShJAh; + Ah;A!j) - (Ak;s!; + S i J A h  +A!jAhj)sh! 
13 23 13 21 I3 23 - 23 I3 23 13 21 13 12 

and 

~Wfs:f + skstfa:! + ~kstfs:f = ~:!s!fst:+ s:fst!~g+ A:;A!~A~:.  ( 5 . 5 )  

After calculation we find that AJi  and Ai l  should be expressed through the q-generators 
as 

we obtain the recurrence relations for the coeficients Dk and Eh, 

( m  # - j )  (5.9) - - q m - I - q - ) w ( [ j + m ~ u [ j - m + l I , ) i  

as well as a sufficient choice 

Ck =o. (5.10) 

Equations (5.8)-(5.10) can be used to determine A J i  and Ah' in terms ofthe representa- 
tions of the q-generators J ,  and J3 satisfying the standard QG, as shown by equation 
(4.12) (z* identifies with J ,  after rescaling). 

It should be emphasized that since the general solution cannot be related to the 
standard one by a similar transformation and by virtue of equation (5.3), in general, 
our solution cannot be expressed by a new basis which is a similar transformation of 
the standard basis in the same manner as for the standard case. We have met the same 
situation for a new solution of SI' [17,181. 
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If C, f 0, the calculation is very complicated, and we give an example only. For 
equation (2.13) we find 

Do= 4- C',  D, =(1/[2l,)(q - 1)(4- q- ' )  
D, = ( 1 - q)(d + 1) 

4 =(-1/[21,)[(1 -q-2)(q2-q-2)11'2, & =  (1/[2Iq)G, 

( 2  = -4&.  

c1= (1/[21,)G2 c2= -([21q)3'2~2 

In conclusion we have verified all of the results listed in the introduction 
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