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General solutions of R/}(x) and quantum group structure

Mo-Lin Get, Xu-Feng Liut, Chang-Pu Sunti and Kang Xueti

T Department of Theoretical Physics, Nankai Institute of Mathematics, Tianjin, 300071,
People’s Republic of China

t Department of Physics, North-east Normal University, Changchun, 130024, People’s
Republic of China

Abstract. A general form of solutions of braid relations associated with ¥/ ® V2 for Su(2)
is caiculated. A Yang-Baxterization prescription is presented to generate the corresponding
solutions of Yang-Baxier equations. We show that this general form of solutions gives rise
to a new construction of quantum group structure even though the g-commutation relations
are kept standard.

1. Introduction

It is known that for spin models the solutions of braid relations
SJ[JZSJ[J;SJZJ} SJ;J;shJ;;sJ Jz (1.1)

can best be explicitly constructed by the quantum groups (@A) through the standard
theory of Drinfeld and Reshetikhin [1-3], where j,,j, and j, are the weight labels
associated with the corresponding spin spaces. In the following, for convenience, we
will call the solutious that can be obtained by the oG (QG) in the usual way the
‘standard’ ones, which can also be worked with the help of the fusion rule [4, 5].

In comparison to the statistical model for a vertex model the Yang- Baxter equation
{YBE) can be written in the form [6, 7]

T Wi alyw)W(o, 816, v) Wi, w|v, )
Yo"
= ¥ Wuulv, p )W aly, B )W, ¥[8, v) (1.2)
T

where W, W' and W are Boltzmann weights. It is well known that if equation (1.2)
can be additively parametrized, then one can introduce

Tho(x)= W' a|B, »)= >g\/ Y

m o
where x =exp(—i8) =exp(—u) and matrices T satisfy
L THOTHO) T )= T TEEMTE (o) T (x) (14)

Pl " P
which by redefining
(R = Tas(x) (15)

is referred to as the incomplete vBE:
| RIP()IRIS (o) RIP(y) = REP (R (xy) Ry(x). (1.6)

0305-4470/91/214955 + 09$03.50 © 1991 [OP Publishing Ltd 4955



4956 Mo-Lin Ge et al

Noting that by considering the asymptotic behaviour
Si = ling R7%(x) (1.7)
the YBE is reduced to the braid relation (1.1).

if we consider the model shown in figure I, where the full lines denote spin j and
the broken lines denote spin $, then equation (1.1) is reduced to

S{isiisi=siisiisi

Siistish = stistisi) (1.8)
Stisiisii= siisiisy
which satisfies the graph in figure 2. As usual the cP invariance should be satisfied,
iy alb) _ o abjy—bidi—als)
(S e = (S*) Zagh—etn (1.9)

under which only two equations in equation {(1.8) are independent:
S{1siisii= siisiisi
ststisti=susiisy.

Hence, solving the model in figure 1 consists of solving equation (1.10). So far no

general solutions of equation (1.10) have been derived. All of the known solutions are
based on the standard construction with usual treatment by @ or fusion rule.

(1.10)

spin } —----|-——-—--—----—— i A -
spin j 15_.. -

spin j
Figure 1. Figure 2.

Motivated by the results in [8-10} where the solutions are beyond the standard
construction, for the braid relation with the same spin spaces

812823812 = 85382553

we want to find a general form of solutions for equation (1.10) which contains the
standard ones as special case.

After lengthy computation we reach the following results:

(i) General solutions of equation (1.1) can be explicitly derived.
In the general case they depend on j+2 (for j=1,2,...) or j+3 (for j=3,3,...) free
parameters, respectively, and cannot be related to the standard ones by a similar
transformation,

(ii) The Yang-Baxterization prescription [10] can be performed to generate solu-
tions of the vBE [11]:

RIH(x) R4y  Rid(y) = RA(») Ridxy) Rik(x)
RA0) BY(xy) RU(y) = RY(y) RE(xy) Rid(x) (1.11)
RY(x) RE(xy) Rid(y) = RiNy) Rid(xy) Raa(x)
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The procedure of Yang-Baxterization is the consequence of cpinvariance and is based
on the Reshetikhin approach [2] and cannot be made by simply following [12].

(iii) The FRT approach [13] is used to give Qc structure for a given §/1/2. The
general solutions of equation (1.1) give rise to the standard structure of the @G, which
is not surprising. However, the centralizer representation (in this paper only j, =3 is
taken into account)

RV plihghis (1.12)
where P V' ® V)= V2@ Vi, possess a different structure from the standard one,
namely

RMr= Riigaca+ AN (1.13)

where RJlJ24..q can be expressed in terms of the basis e,(v”") and e*(v) in the usual
way [1-3, 12). The additional terms are determined through recurrence relations. In
other words, the ‘exotic’ property occurs in the different way of construction of R*/
with the basis rather than in the commutation relations.

2. General solutions for §7*

We are looking for general solutions satisfying equations (1.8) and (1.9) and the weight
conservation

a(j)+b(z)=c@)+d (). (2.1
Then equations (1.8}, (1.9) and (2.1) constrain $** and §/} to the forms
fgihebbd) o) 1 82 ab| - -] N
W ey T Glasb=csd 8a8ciany T W88 act \i.of
jivaliyb(i) (a{i)b(})) aalj) obid) a(jhb a bii)
(Sj%)c(;)d(_r) =P smbid 8 (JJIS (§)+q( il (i))SdEj)—zb(iJS—j{al (2-3)

(a(j)bli)) (a()),b(4))

where w=g—q ' and the parameters p and g are to be determined.
Obviously, for sH only the standard solution is allowed, as shown by equation (2.2}.

Substituting equations (2.2) and (2.3) into equation (1.8) and taking equation (1.9)
into account we obtain the relations that the unknown parameters must satisfy:

g =0 platd = gplati—tb plal=d o gm1ptati=loy)
q"“”"”q(“'”""”l,,( j_q(au’),uq(—am—1.5)|a{j)<j (2.4)
= g7 w(paIpimad—b . pimaldd plali. -y,
Without loss of generality, taking
pit=g p(—j,—9=0Q (2.5)

where ¢ and @ are arbitrary parameters, we then obtain the general solutions of
equation (1.8) under equation (1.9):

p(a(f).!J — qn(j)+1—j p(a[j).~iJ = q_a(_il-jo q(a(_i).—h =0

g TG = B Qi — a()] L+ el + 1], (a(j)#j) (2.6)
w=g—gq"

where

[nl,=(q"-q ")/ (g—q"). (2.7)



4958 Mo-Lin Ge et al

Thus ¢'"*“"""¥ can be determined if ¢"““¥ are regarded as free parameters. In
the general solutions there will be j+2 or j+3 free parameters for j=12,...0r
j=3,5,..., respectively.

When

O=gq g maTI = glanb (2.8)
the solutions (2.6) are reduced to the standard solutions, under which

tatjl—4) _n
g =0

Lalh) )

=q
plati=b = gativ+i=i (2.9)
¢ = g w{lj— a(DLj+a()+1], 1

which coincide with the results given in [1-3]. Actually, by direct calculation, up to
an overall factor ¢7*', equation (2.9) leads to the representation of the universal
R-matrix:

(R“)',',',;';i - :{iﬁi U_'_M m
I e —my ],
(ﬂ+mﬂaﬂ—mdﬂu—mﬂﬂu+mﬂﬂy”
B—mi1 3+ m ) L+ mil - molg !

(a(j) is taken as m).
To illustrate we now give some examples. When j =1 we have the solutions

mytmymy

(2.10)

q
0 ¢77Q
SsH= 1 q . (2.11)
l W
'1]7| q2
with ]
9142:QW(1_4_4) ’ (2.12)
and
g ) .
0 Q
Su= 1 q (2.13)
g2 qQ
g 0
[ 0.
with
4= —44,. (2.14)

Both solutions satisfy equations (1.8}, (1.9) and (2.1).

We emphasize that the general solution possesses six distinct eigenvalues for j =1;
for example, g, Q, X(g: £ (g>+4g7>Q)"?, i=1, 2. However, the standard one has only
three distinct eigenvalues because of the reduction. Obviously they cannot be connected
through a similar transformation. This feature holds for any j. The example with j =3
has been analysed explicitly. We omit this example in this paper.



General solutions of R'*(x) 4959
3. Yang-Baxterization

As was pointed out in [10] the Yang-Baxterization prescription is developed on the
basis of Jimbo’s loop extension theory {11], which is based on projectors and cotre-
sponding ecigenvalues. It is worth noting that Yang-Baxterization for the present
solutions cannot simply be done by following either [10] or [11], because in the present
case the numbers of distinct eigenvalues and decomposed subspaces are no longer the
same. The number of such subspaces is two, resulting in the decomposition

J@®3=j+i®j-1. (3.1)

Our scheme is very simple and is based on direct verification. For §** it is well known
that

R¥(x)=x(siH~'—sH (3.2)
Taking equation (3.1) into account we know Yang-Baxterization for §’ ! takes the form
RAx)= Ax(SY) '+ A,8% (3.3)
RY(x)= A, x($/) 7"+ A,8Y (3.4)

where the cp invariance has been considered. Substituting equations (3.2)-(3.4) into
equation {1.11) we find equation (1.11) is satisfied for any spectral parameter x if

A =-Qq YA,. (3.5)
For convenience we take A, =g then

Ay=—g¥ Q7L (3.6)
In this manner the Yang-Baxterization of the general solutions leads to

Ii”(x)= Y P(am’b{w(x)Ea(j),b(g)®Eb(g),a(j)
a(j).bh)

+ (.)me g (%) Ea),-5y @ Enqiy.atvanih (3.7)
aly),

where (E, ;) = 8,.60q and

pletbtn () = {‘I"H(xq_a{j)— Q7 'g*™h) for b(3) =4 (3.8)
iy q‘i(xqﬂ(j) _ Q-iq*a(j)ﬂ) for b(%) — _% .
@ieay _ [ @ TIQTIgl for b(z) =1 39
q = _qzj+1xq(—au).£) for b(H)=—14. (3.9)
Equation (3.8} allows the standard solutions as a special case where
(ali) by .y qJ+](xq_a(j)“‘an)) for b(3) =}
4 (x) = Jf ypalid _ ~alj} for b(ly=_1 (3.10)
q'(xq q ) or b(3) b
q(am.h(&n( )= {—q”’w{[j—a(j)]q[j*' a(j)+1]q}uz for 6(3) =3 (3.11)
—q'w{lj+al )], —a(j)+1],Hx for b(3)=—1. '

It is interesting to point out that by taking x=-—1 the standard solutions of
R’}(x)l,-_, given by equations (3.10) and (3.11) exactly coincide with the results given
in [14, 15). This particular example (f = 1) had been given in [16).
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4. Quantum group structure

Following the FrT approach [13] for a given S’} the corresponding quantum group
can be set up. For convenience the indices a() will henceforth be replaced by Greek
letters and b(3) by Latin letters; we then have the solutions

where

(87, = P82 8% + g 50 5L,

(S¥) i =p R8T, + g 88

mov=jj—L1,...,—j+1, ~f I m=43
p(u,i) =qM-+1-J' p(#.—£)=q—u“jo q(ﬂ-.—i) =0
g g = g Q- w) [+t 1], (e # £§).

The corresponding FRT relations read

SHLL@LL)=(Li®LL)s/!
SY(LL® LYy = (LA ® LL)SsY
SHLE@L) =(L.®L)s/
SVl =(LteL)sY.

After calculation we find

where
. n
=1
I=
n
B " =1]

(q(u—l.}}gu+j+lQ—lq—2f+1(Qq—l)(f—l)/j)/(qJ _ q—.l)

(Lo)4=al KT K3 (X
(L_ys=BaKirK3 (X

(L)} =K7'K, (L= K.K3' (L)Y, =K K, X"

(Ly=KK,  (L)}=K'K,  (L)'=K'K3XT

(L)' =(L) =0

al={_ for w<w
Br=0 forp>v
(¢ g Qg V(g ) (n=L2....j-v)

and the operators satisfy the relations

[Ki, KJ]=0 K X*Ki'=(Qq"™)""¥X*
szth;l' — (Qq—l)::l'/’zszt

{(n=1,2,..

(4.1)
(4.2)
(4.3)

{4.9)
(4.5)

(4.6)

(4.7)

(4.8)

L jtv)

(4.9)

(Qg )X X" —(Qg )X X" =g ' wK; (K’K3- KiK7Y).
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The coproduct A, co-unit ¢ and antipode y are givén by the following:
AK, =K ,®K, AK,= K,®K,
AXT=K'®X'+ X ®K;’

AX =X QKiK;*+K;*®@X"~

(4.10)
e(KD)=¢e(K,))=1 e(X*)=0
y(XT)=~Q gKiKIX" ¥ X7 )=-Qq ' Ki*K${X™
8(K))=K7' y(K2)=K3'.

Simitar to the discussion in [17] the commutation relations can be simplified by
introducing

X*=X"K} ¥=K K3 {4.11)
We then have the usual commutation relations except a centre

KoX*K7'=(Qq ' y*V¥x* (9%, K;)=0

HX*H =g X" (4.12)

(X4, X7 =q"'w(A 2=

It is not surprising that the above result has been reached since we cannot go
beyond the basic structure of the QG. Actually, this result checks the validity of our
solutions. We would like to emphasize that the derivation of such commutation relations
does not mean that the QG structure is ‘trivial’. In the next section we will point out
that the construction of the R-matrix is no longer standard, i.e. it cannot be formed
in the usual way in terms of basis, nor can it be related to any similar transformation
of the standard basis.

5. Relationship between general and standard solutions
According to the standard construciion of the R-matrix [1-3] the centraiizer can be

represented in terms of the basis of universal enveloping algebra. The representation
in this case is

. 4) 53 (l_q )
SH gua= g7 ISP Z_: #

n=0 [
Lin ,.(i)r,r\ —pUNIY (hs p ovnn P
x g g p B ) @ g7 e (I))" (3.1}
where p'’ stands for the representation of SU,(2} and
p P = (Fm),Li=m+1],) %80
‘”(13):’=2maz' m, m'e (j,j— L., =j) (5.2)

SU = Sétjandard-‘l' Ah
Sji:Sst%:lm'.hlri:i-'-A}i (5‘3)

S“ = Sél;andard '
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Let us determine A* and A’! by substituting equation (5.3) into equation (1.1). The
constraint relations yield

Siialisti+ stali+ aliall) = (alst+ s¥iati+akall) st (5.4)
and
AUSHSH+ susaf +alistisi = addstisii+ shistiau +adlatial). (5.5)

After calculation we find that A" and A¥ should be expressed through the g-generators
as

AU — % Dm“’(J-p“’(L)@(p‘”(L))“(p‘”(L,)}"

k=0
+ 3 Bo®U@ (e U ()"
+ 3 GBI PP (56)
Using

. . v k .
[ D (e (I N T = Tl L+ m+ 0,0 = m+ 141187
eI )pPUN@ (U (0 (L)) k] mims (5.7)
= T L+ myt 1L = mo— 411,875,567
P=1 k

we obtain the recurrence relations for the coefficients D, and B,

Do"’k)z_:ll Dk(:l[j+m+f]q[f‘m—’+1]q)=qm'(Q—q) {m#j) (5.8)
Dy=g7""Q-q)
and
2f &

([j+m]q[j—m+1]q)i[al+k§2 (11;12 Bk[j+m—-l+1]q[j—~m+l}q)]

=gy =g w((j+m],[j-m+1],)} (m# —j) (5.9)
as well as a sufficient choice

C.=0. (5.10)

Equations (5.8)-(5.10) can be used to determine A’Yand AY in terms of the representa-
tions of the g-generators J, and J; satisfying the standard QG, as shown by equation
(4.12) (X* identifies with J, after rescaling).

It should be emphasized that since the general solution cannot be related to the
standard one by a similar transformation and by virtue of equation (5.3}, in general,
our solution cannot be expressed by a new basis which is a similar transformation of
the standard basis in the same manner as for the standard case. We have met the same
situation for a new solution of §'' [17,18].
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If C, #0, the calculation is very complicated, and we give an example only. For
equation (2.13} we find

Do=Q—-q ', Dy=(1/[2], {q— 1O~ ¢7"
D,=(1-g}Q+1)

B, =(=1/[2] (1 - ¢7)qg*—q )"’ B,=(1/[21,)4,
C,=(1/[21,)d> Co=—([21,)"°4,

-

§2=—4q4.
In conclusion we have verified all of the results listed in the introduction.

Acknowledgment

This work was partly supported by NSF of the People’s Republic of China.

References

[1] Drinfeld V G 1985 Dokl Akad. Nauk. CCCP 283 1060; 1986 Proc. ICM, Berkeley, California, USA
pp 798-820
[2] Reshetikhin N Yu 1988 Preprint LOMI E-4-1987
[31 Kirillov A N and Reshetikhin N Yu 1989 Infinite Dimensional Lie Algebras and Groups ed V G Kac
(Singapore: World Scientific)
[4] Kulish, P P, Reshetikhin N Yu and Sklyanin E K 1981 Lest. Mach. Phys. 5 393-403
[5] Jimbo M 1986 Len. Math. Phys. 11 247
Cherednik 1 V 1986 Seoviet Math. Dokl. 33 507-10
[6] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[7] de Vega H I 1990 far. J. Mod. Phys. B 4 735
[8] Lee H C, Couture M and Scheing N 1988 Preprint Chalk River, Canada
[9] Ge M L and Xue K 1990 Phys. Lett. 146A 245
Cheng Y, Couture M, Ge M L and Xue K 1991 Int. S Mod. Phys. A 6 559
Ge M L and Xue K 1991 J. Phys. A: Math. Gen. 24 L89S 1991 J. Math. Phys. 32 1301
[10] Ge M L, Wu Y § and Xue K 1991 Int, J. Mod. Phys. A 6 3735
[11] We would like to emphasize that so far for VA1 ® V% the general Yang-Baxterization has not been set
up satisfactorily. In [10] an extension of Jimbo's theory (see [12]) is given which works only for
f1=1Jo. If the fusion rule does not work as in the present case one should rediscuss the problem
[12] Jimbo M 1985 Lenr. Math, Phys. 10 63
[13] Faddeev, L D, Reshetikhin N Yu and Takhtajan, A L 1989 Algebra Analysis 1 178
Takhtajan L 1990 Introduction to Quantum Group and Integrable Massive Models of Quantum Field
Theory ed Ge M L and Zhao B H (Singapore: World Scientific) pp 69-197
[14] Curtright and Zachos C 1989 Preprint ANL-HEP-PR 89-105
[15] Curtright T, Ghandour G 1 and Zachos C 1990 Preprint ANL-HEP-PR-20-08
[16] Ge M L, Li W and Xue K 1990 Yang- Baxterization and new solutions associated with 3U,_(2) tensorial
Space V'® v'/? Preprint Nankai
[17] Ge M L and Wu A C T 1991 Quantum groups construcied from the non-standard braid group
representations in the Fadeev-Reshetikhin-Takhtajan approach J. Phys. A: Math. Gen. 24 L725
(where the separation like equation (4.12) for new sclutions of A, was firstly made)
[18] Ge M L, Sun C P and Xue K, 1990 J. Pays. A; Math. Gen. 23 1.645
The general discussion on the application of weight conservation to find sclutions of braid relations
can be found in the following references:
Ge ML, Li Y Q and Xue K 1990 J. Phys. A: Math. Gen. 23 605, 619
Ge M L, Gwa L H, Piao F and Xue K 1990 L Phys. A: Math, Gen. 23 2273
Ge M L, Wang L Y, Xue K and Wu Y § 1989 Inr. J. Mod. Phys. A 43351, 1990 Int. J. Mod. Phys. A
51975
Ge M L, Wang L Y and Kong X P 1991 J. Phys. A: Math. Gen. 24 569



